Startseite       SB-Funktionen für Studierende    WiSe 2021/22      Switch to english language  Hilfe

Theoretical and Computational Biophysics (Online) - Einzelansicht

  • Funktionen:

Grunddaten
Veranstaltungsart Vorlesung Kurztext
Veranstaltungsnummer 530257 SWS 2.00
Semester WiSe 2021/22 Studienjahr
Erwartete Teilnehmer/-innen 30 Hyperlink http://www.mpibpc.mpg.de/grubmueller
Turnus jedes 2. Semester
Credits 4
Sprache englisch
Termine :
  Tag Zeit Turnus Termin Raum Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen Module
Einzeltermine anzeigen Mo. 16:00 bis 17:30 wöch. 25.10.2021  bis
07.02.2022
Fakultät Physik - C.00.110
Lageplan
       
Einzeltermine anzeigen Mo. 16:00 bis 17:30 wöch. 25.10.2021  bis
07.02.2022
Fakultät Physik - HS3, A.00.105
Lageplan
       
Prüfungstermine :
  Tag Zeit Turnus Termin Raum Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen Module
Einzeltermine anzeigen -.    mdl.Prf. Block 07.03.2022  bis
18.03.2022
          4


Zugeordnete Personen
Zugeordnete Personen Zuständigkeit
de Groot, Bert L., apl. Prof. Dr. verantwortlich
Grubmüller, Karl Helmut, Hon.-Prof. Dr. verantwortlich
Prüfungen / Module
Modul Studiengänge
B.Phy.5648.Mp: Theoretische und computergestützte Biophysik
Modulbeschreibung
Bachelor → Angewandte Data Science →Anwendung - Physical Modeling and Data Analysis - Gr. 2 →B.Phy.5648: Theoretische und computergestützte Biophysik
Master → Matter to Life →Master - Advanced Courses →B.Phy.5648: Theoretische und computergestützte Biophysik
Master → Physik →Master - Forschungsschwerpunkt Biophysik und Physik komplexer Systeme →B.Phy.5648: Theoretische und computergestützte Biophysik
Master → Physik →Master - Forschungsschwerpunkt Theoretische Physik →B.Phy.5648: Theoretische und computergestützte Biophysik
Master → Mathematik →Master - Nebenfach Physik (Profile F, Phy) →B.Phy.5648: Theoretische und computergestützte Biophysik
Master → Physik →Master - Profilierungsbereich Mathematik-Naturwissenschaften (6 C) →B.Phy.5648: Theoretische und computergestützte Biophysik
Master → Chemie →Master - Wahlpflichtmodul - Thematische Vertiefung →B.Phy.5648: Theoretische und computergestützte Biophysik
Bachelor → Physik →Profilierungsbereich →B.Phy.5648: Theoretische und computergestützte Biophysik
Schlüsselkompetenzen → Uniweit - Sachkompetenz →B.Phy.5648: Theoretische und computergestützte Biophysik

Weitere Informationen zu den Prüfungsordnungen und Modulverzeichnissen finden Sie hier: Studienfächer von A-Z
Zuordnung zu Einrichtungen
III. Physikalisches Institut - Biophysik
Inhalt
Organisatorisches

The course will alternate between two rooms in the Physics Faculty: Lectures take place in a lecture hall and the hands-on computer tutorial takes place in a CIP-Pool Computer room or a seminar room, Friedrich-Hund-Platz 1, 37077 Göttingen. Please see the corresponding room entry.

To conduct the hands-on computer tutorial, you need access to the CIP-Pool computers at the Physics Faculty. Usually, only students of the physics faculty automatically get such an account. A GWDG account or an account of a different faculty is not sufficient. If you do not possess such an account yet, please contact the local CIP-Pool Administrator office in room C.00.101 or write an Email to: support@cip.physik.uni-goettingen.de. You need to complete an application form, get the lecturer's signature and hand this over to the CIP-Pool Admin-office in advance.

Voraussetzungen

Basic knowledge in physics preferred, programing skills are not required. Lecture "Introcution to Biophysics" is recommended but not prerequisite.

Bemerkung

This combined lecture and hands-on computer tutorial focuses on the basics of computational biophysics and deals with questions like "How can the particle dynamics of thousands of atoms be described precisely?" or "How does a sequence alignment algorithm function?"

The aim of the lecture is to develop a physical understanding of those "nano maschines" by using modern concepts of non-equilibrium thermodynamics and computer simulations of the dynamics on an atomistic scale. Moreover, the lecture shows (by means of examples) how computers can be used in modern biophysics, e.g. to simulate the dynamics of biomolecular systems or to calculate or refine a protein structure. No cell could live without the highly specialized macromolecules. Proteins enable virtually all tasks in our bodies, e.g. photosynthesis, motion, signal transmission and information processing, transport, sensor system, and detection. The perfection of proteins had already been highly developed two billion years ago.

The following topics will be introduced and discussed: Protein structure and function, physics of protein dynamics, relevant intermolecular interactions, principles of molecular dynamics simulations, numeric integration, influence of approximations, efficient algorithms, parallel programing, methods of electrostatics, protonation balances, influence of solvents, protein structure determination (NMR, X-ray), principal component analysis, normal mode analysis, functional mechanisms in proteins, bioinformatics: sequence comparison, protein structure prediction, homology modeling, and hands-on computer simulation.

The course focuses on the basic concepts and techniques of computational biophysics, addressing questions such as "How can the dynamics, the statistical mechanics, and the quantum mechanics of biological macromolecules -- consisting of thousands of atoms -- be described sufficiently accurately to quantitatively understand their function?", or "How do sequence alignment algorithms work?". The main aim of the lecture is to acquire a fundamental physical understanding of these "nano-machines" through modern non-equilibrium thermodynamics concepts and computer simulations of their dynamics at the atomistic level. Moreover, we will demonstrate the use of computers in modern biophysics, e.g. to derive and refine protein structures from experimental data and, ultimately, to understand the function of these biological nano-machines.

Without these highly specialised macromolecules, no cell would survive. In fact, virtually all tasks in our bodies, e.g. photosynthesis, motion, signal transmission and information processing, transport, sensor system, and detection, are performed or driven by proteins, which have been optimized and perfected by evolution over the past two billion years.

Kommentar

The summer term lecture "Biomolecular Physics and Simulations"  is recommended in the following semester for interested students to get more insight into concepts and methods.

Doctoral students of the Göttinger Graduate School for Neurosciences, Biophysics and Molecular Biosciences (GGNB) are welcome to participate and receive 2 Credits for this methods course (Biophysics, Bioinformatics and Statistics).

Zielgruppe

Bachelor Students (Semester 5 and higher) Master Students (Semester 1)

Leistungsnachweis

Oral examination (30 min)


Strukturbaum

Die Veranstaltung wurde 8 mal im Vorlesungsverzeichnis WiSe 2021/22 gefunden: